20
Mar
10

Catalan Number


The Catalan numbers on nonnegative integers n are a set of numbers that arise in tree enumeration problems of the type, “In how many ways can a regular n-gon be divided into n-2 triangles if different orientations are counted separately?” (Euler’s polygon division problem). The solution is the Catalan number C_(n-2)

A few catalan numbers are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324

Number of sides 3 4 5 6 7 8 9
Number of way to partition it into triangles 1 2 5 14 42 132 429

Advertisements

0 Responses to “Catalan Number”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


So what’s this blog about?

Another attempt? Well yes. Attempting to figure out another sustainable model (there are some other attempts going on parallel-ly). Well, we have a lot of questions in mind. we read up stuff, we do some research to find answers to these questions. This is an attempt to publish that little 15-20 minute research.

Click to subscribe to One Post Daily.

Join 5 other followers